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Abstract. We show how the free-energy landscape of a system, normally used only for calculating
its equilibrium phase diagram, can be used to predict the kinetic pathways that are permitted in
the course of phase separation. Applications to one particular soft condensed matter system, a
colloid–polymer mixture, are briefly described.

1. Introduction

Gibbs and Boltzmann gave us a recipe for calculating the equilibrium phase behaviour of an
N -particle system with potential energy U(�rN) at temperature T and confined to volume V :
minimize the Helmholtz free energy

F = −kBT ln
∫

e−U(�rN )/kBT d�rN . (1)

The results of this minimization are plotted as phase diagrams for comparison with experiment.
To make our discussion concrete, figure 1 shows the temperature–density (T , ρ) projection of
the phase diagram of a simple substance such as argon.

The algebraic problem of minimizing (1) can be recast in geometric language in terms
of the ‘free-energy landscape’, a plot of the free-energy density, f = F/V , as a function of
the density, ρ = N/V . All tractable approximations to F give rise to distinct branches in
the f (ρ) plot for structures of different symmetries. For argon, f (ρ) shows a fluid branch,
fF(ρ), and a solid (crystal) branch, fS(ρ), for amorphous and ordered arrangements of particles
respectively. fS(ρ) always has a single minimum, while fF(ρ) can display one or two minima,
depending on the temperature.

Figure 2(a) shows the schematic free-energy landscape of argon at a temperature T0 just
below the triple coexistence temperature, Ttr (see figure 1). The three minima on this free-
energy landscape can, loosely, be associated with the gas, liquid and solid (crystal) phases.
Now construct the lowest common tangent, and obtain the points of common tangency, ρ1 and
ρ2. It is easily shown [1] that to minimize F (or, equivalently, f , because V is constant), the
system remains in a single, dilute, amorphous phase (gas) at all densities ρ < ρ1, and a single,
dense, ordered phase (solid) at all densities ρ > ρ2. At intermediate densities, the lowest F
is obtained by the system phase separating into coexisting gas and solid phases at densities ρ1

and ρ2 respectively. At T0 there is no thermodynamically stable liquid phase.
This common-tangent construction gives no information on processes—how does a

homogeneous dense fluid at temperature T0 and density (say) ρ0 (see figure 1) actually phase
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Figure 1. The temperature–density (T , ρ) projection of the phase diagram of a simple substance
such as argon. Phase boundaries are shown by continuous lines. Single phases occur in the
regions G (gas), L (liquid) and S (solid). Coexistence of two phases occurs between the respective
phase boundaries. Triple coexistence occurs at the triple temperature Ttr . The dotted curves are
the metastable continuations of the gas–liquid, gas–solid and liquid–solid phase boundaries. The
metastable liquid–solid boundary terminates at the temperature T �. The dash–dotted curve is the
gas–liquid spinodal. The shaded regions A, B and C give rise to kinetic pathways discussed in
the text. Note that this is also the phase diagram of a colloid–polymer mixture with large enough
polymer-to-colloid size ratio; in this case the vertical axis represents τ = kBT /|U0

dep|, the inverse
dimensionless depletion potential at contact.

Figure 2. Free-energy landscapes at temperatures (a) T = T0, (b) T < T � (see figure 1). See the
text for a discussion.

separate into the final equilibrium state of macroscopically coexisting regions of gas and
crystal at densities ρ1 and ρ2? This kinetics question is hard for both theory and experiment.
Theoretically, a common way to tackle it is via various phenomenological models [2]. Thus,
‘model B’ gives the following equation of motion for a conserved ‘order parameter’ (e.g. the
space- and time-dependent density, ρ(�r, t)):

∂ρ

∂t
= ∇

[
M(ρ)∇

(
∂f (ρ)

∂ρ
− κ ∇2ρ

)]
. (2)
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Equation (2) is a highly non-trivial non-linear partial differential equation even for simple
forms of f (ρ), and involves phenomenological mobility and curvature coefficients,M(ρ) and
κ , which are generally unknown.

In this paper we expound instead a simple but somewhat neglected procedure (due first to
Cahn [3]) for turning phase diagrams into ‘kinetic maps’—a delineation on the phase diagram
of regions of different possible kinetic pathways for phase-separation processes. Once f (ρ)
is known, this procedure involves almost no further mathematical effort. On the other hand,
the predictions it gives are ‘permissive’ rather than ‘predictive’, i.e. they limit possible kinetic
pathways without giving any guidance on how to choose between permitted alternatives or
predicting any actual rates. Further progress can, however, often be made by making ‘educated
guesses’ [4].

2. The key graphical construction and its implications

Consider again the free-energy landscape in figure 2(a). An f (ρ)with three minima is generic
to a number of soft condensed matter systems, e.g. AOT/oil/brine, where the three minima
correspond to L1/Lα/L3 phases [5]. For concreteness, however, we continue for the moment
to label the three minima ‘gas’, ‘liquid’ and ‘solid’ (crystal). Instead of the question of
equilibrium phase coexistence, let us now ask: how much free energy is available to precipitate
an infinitesimal amount of a crystal of density ρ2 from a homogeneous fluid at density ρ0?
The answer, again easily shown using the same mathematics as leads to the common-tangent
construction, is given [3] by the vertical distance between the tangent to the fluid branch; at ρ0

and the point fS(ρ2) on the solid branch; figure 2(a). Below, we discuss the kinetic implications
of this ‘Cahn construction’ using worked examples.

2.1. Worked example (1)

Take a homogeneous fluid at ρ0 in the free-energy landscape in figure 2(a) (see also figure 1).
The tangent α to the fluid branch at this point is above all three minima, i.e. positive free energy
is available to precipitate out infinitesimal amounts of gas, liquid or crystal. Here the Cahn
construction alone gives a maximally permissive prediction. ‘Educated guesses’ can take us
further. Note that f ′′

L (ρ0) < 0 (where a prime denotes differentiation with respect to ρ), so
the homogeneous fluid is unstable towards local density fluctuations—(T0, ρ0) is within the
gas–liquid ‘spinodal’ line [2]. Spinodal decomposition, because it involves no energy barriers,
is fast. It is therefore likely (here is the ‘educated guess’!) that the homogeneous system will
first phase separate into gas and liquid by this route, and then crystals will nucleate out of
the denser liquid regions (and, to a lesser extent, the gas regions) subsequently. We call this
scenario A.

2.2. Worked example (2)

Turn now to the f (ρ) plot in figure 2(b). The difference from figure 2(a) is that fS(ρ) is now
so much lower relative to fL(ρ) that no common tangent can be drawn between the solid and
liquid minima. Consider first a homogeneous fluid (‘liquid’) with density ρ3. The tangent
β to the fluid branch at this point is below the gas minimum but above the solid minimum.
Thus, the system cannot nucleate (at least initially) gas bubbles. Instead, it must first nucleate
crystallites. However, since no common tangent can be drawn between the solid and liquid
minima, no stable local interface between any crystallite and the surrounding liquid is possible.
Common tangents can, however, be drawn between the solid and gas minima, and between
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the gas and liquid minima. Thus, the system can only nucleate a crystallite that is coated by a
layer of gas which coexists in local equilibrium with both the crystallite and the surrounding
liquid. We call this scenario B.

If the density of the initial homogeneous liquid is decreased slightly to ρ4, figure 2(b),
the ‘Cahn tangent’ (γ ) is then above both the gas and solid minima. The system can now
nucleate gas bubbles or gas-coated crystals, either sequentially or simultaneously. We call this
scenario C.

3. Carving up the phase diagram into kinetic regions

The equilibrium phase boundaries plotted in figure 1 are obtained by constructing the lowest
common tangents on the free-energy landscapes at different temperatures. Various ‘metastable
phase boundaries’, however, can be constructed by drawing higher common tangents, such
as the liquid–solid and gas–liquid common tangents constructed in figure 2(a). These give
‘metastable continuations’ of the various equilibrium phase boundaries, which are shown as
dotted curves in figure 1. Also shown (dash–dotted curve) is the gas–liquid spinodal, the locus
of inflection points on the liquid branch of the free-energy landscape (i.e. f ′′

L (ρ) = 0). At
T ∗ the low-density branch of the metastable continuation of the liquid–crystal coexistence
boundary meets the gas–liquid spinodal and terminates; there is no common tangent between
the crystal and liquid minima in the free-energy landscape below this temperature.

These various curves demarcate different kinetic regions—the Cahn construction gives
distinct permitted kinetic pathways for homogeneous samples belonging to different regions.
A moment’s thought would now show that the regions labelled A, B and C should give rise to
the behaviours with those labels considered in section 2.

4. Colloid–polymer mixtures

We now apply these rules to explain the phase-separation kinetics of one particular soft
condensed matter system, a mixture of hard-sphere colloids and non-adsorbing polymer.
Experimental details have been given before [6]. Here we emphasize a generic aspect of
the problem—time-evolving free-energy landscapes.

The addition of polymers (radius of gyration rg) to a hard-sphere colloid (radius R)
induces an attraction between the particles. Polymer segments are depleted from a layer
of thickness ∼rg around each particle. The overlap of the ‘depletion layers’ of two nearby
particles creates additional free volume for the polymer, lowers the free energy and causes an
effective interparticle ‘depletion’ attraction:

Udep(r) = −�PVov(r) = −(n∗
PkBT )Vov(r) (3)

where �P is the osmotic pressure of the polymer and Vov(r) is the volume of overlap of
neighbouring depletion layers. The second equality is for an ideal polymer at number density
n∗

P in the free volume. n∗
P is related to the polymer chemical potential µP (and its de Broglie

thermal wavelength  P) by [7]

n∗
P =  −3

P eµP/kBT . (4)

The topology of the phase diagram of a colloid–polymer mixture depends on the size ratio
ξ = rg/R. We concentrate on the case of ξ � 1/3, when the phase diagram shows colloidal
gas, liquid and crystal regions [7]. If we use as variables the colloid volume fraction, φ, and
the inverse dimensionless depletion potential at contact (i.e. r = 2R in (3)), τ ≡ kBT /|U 0

dep|,
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then the phase diagram is similar to that shown in figure 1. In particular, triple coexistence
occurs along a line—coexisting phases of colloidal gas, liquid and crystal have different φ,
but identical µP = µtr

P (see (3) and (4)). Since τ here takes the role of the temperature T
in the argon phase diagram, this variable, or equivalently n∗

P or µP, controls the shape of the
free-energy landscape in a colloid–polymer mixture.

Experimentally, the directly controllable variable is not µP (or, equivalently, n∗
P) but

the polymer number density in the total volume, nP. On the (φ, nP) phase diagram, triple
coexistence shows up as a triangular region. A homogeneous sample within the triangle
separates into gas, liquid and solid phases with compositions given by its corners. In a sample
that has macroscopically separated into these phases, µP = µtr

P , and the three minima on its
free-energy landscape lie on a single common tangent. When such a sample is homogenized,
however, the polymer chemical potential rises, µP > µ

tr
P , and the liquid minimum becomes

metastable. The free-energy landscapes shown in figure 2 are therefore appropriate for
homogeneous colloid–polymer mixtures with compositions within the triple triangle. The
different kinetic regions on the (φ, τ ) phase diagram (cf. figure 1) can be mapped onto the
(φ, nP) phase diagram, dividing, in particular, the three-phase triangle into regions where
different kinetic pathways are expected. These kinetic regimes have been observed [6]. In
figure 3 we show micrographs demonstrating the scenario A discussed in section 2.1.

Figure 3. The left-hand micrograph shows the early stages of phase separation in a colloid–polymer
mixture showing the behaviour labelled A in the text, with a bicontinuous structure of colloidal
liquid and gas indicating spinodal decomposition taking place. As the colloidal particles are denser
than the surrounding liquid, the liquid phase gathers at the bottom of the sample cell, with the gas
phase on top. Later, crystallization starts within the liquid phase (right-hand micrograph).

The above discussion is based on the premise that the shape of f (ρ) (and therefore the
kinetic map) of a colloid–polymer mixture is controlled by the polymer chemical potential.
This is equivalent to assuming that of the two concentrations, φ and nP, the latter is the fast
variable. This is a reasonable assumption for the mixtures that we studied, where ξ � 0.4.
Thus, while µP continuously lowers during phase separation, it is equilibrated throughout an
inhomogeneous sample at any particular stage of the phase-separation process. The evolving
µP means a continually changing f (ρ) throughout the phase-separation process, and only
asymptotes to the situation in which all three minima lie on a common tangent.
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5. Concluding remarks

In this paper, we have expounded a scheme based on earlier suggestions of Cahn [3] whereby
permitted kinetic pathways in a system undergoing phase separation can be deduced from
the underlying free-energy landscape. The approximate theoretical free-energy landscape is
known for any system for which the equilibrium phase behaviour has been calculated; the
topology of this landscape can be inferred from the experimental phase diagram in many more
cases. Potentially, therefore, a large amount of kinetic information can be obtained by applying
this scheme to systems with already-known equilibrium phase behaviour.

While the specific example discussed above was a colloid–polymer mixture, and we
expect other applications to come from soft condensed matter, we point out that the scheme
is generically applicable. Indeed, Cahn’s original motivation was to design phase pathways
for the synthesis of glassy metallic alloys. The phase-separation kinetics of water sealed in an
isolated, constant-volume container can also be discussed in these terms [8].

Finally, we note that there have been recent attempts at putting the status of concavities
in the free-energy landscape (cf. figure 2) on a firm statistical mechanical footing [9].
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